Утвержден 1ГГ.671 241.009 РЭ-ЛУ

Трансформаторы напряжения незаземляемые НОЛ.08

Руководство по эксплуатации 1ГГ.671 241.009 РЭ

Настоящее руководство по эксплуатации (РЭ) содержит сведения о назначении, конструкции, характеристиках трансформаторов напряжения незаземляемых НОЛ.08 (далее - «трансформаторы»), предназначенных для электроэнергетики, для атомных станций (АС) и указания, необходимые для правильной их эксплуатации.

1 Нормативные ссылки

1.1 В настоящем руководстве по эксплуатации использованы ссылки на следующие стандарты:

ГОСТ 8.216-2011 ГСИ. Трансформаторы напряжения. Методика поверки ГОСТ 9.014-78 ЕСЗКС. Временная противокоррозионная защита изделий. Общие требования

ГОСТ 1516.3-96 Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции

ГОСТ 1983-2015 Трансформаторы напряжения. Общие технические условия ГОСТ 4751-73 Рым-болты. Технические условия

ГОСТ 8865-93 Системы электрической изоляции. Оценка нагревостойкости и классификация

ГОСТ 10877-76 Масло консервационное К-17. Технические условия

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 15543.1-89 Изделия электротехнические и другие технические изделия. Общие требования в части стойкости к климатическим внешним воздействующим факторам

ГОСТ 21130-75 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры

ГОСТ 23216-78 Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний

ГОСТ 28779-90 Материалы электроизоляционные твердые. Методы определения воспламеняемости под воздействием источника зажигания

ГОСТ 30631-99 Общие требования к машинам, приборам и другим техническим изделиям в части стойкости к механическим внешним воздействующим факторам при эксплуатации

ГОСТ 32137-2013 Совместимость технических средств электромагнитная. Технические средства для атомных станций. Требования и методы испытаний

ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения

ГОСТ Р 50648-94 Совместимость технических средств электромагнитная. Устойчивость к магнитному полю промышленной частоты. Технические требования и методы испытаний

ГОСТ Р 51318.11-2006 Совместимость технических средств электромагнитная. Промышленные, научные, медицинские и бытовые (ПНМБ) высокочастотные устройства. Радиопомехи индустриальные. Нормы и методы измерений

РД 34.45-51-300-97 Объем и нормы испытаний электрооборудования

Правила технической эксплуатации электрических станций и сетей Российской Федерации

Правила по охране труда при эксплуатации электроустановок (от 24.07.2013 г. № 328н)

Правила устройства электроустановок. Седьмое издание. Шестое издание. Правила технической эксплуатации электроустановок потребителей.

НП-001-15 Общие положения обеспечения безопасности атомных станций НП-031-01 Нормы проектирования сейсмостойких атомных станций

2 Требования безопасности

2.1 При проведении всех работ должны выполняться правила техники безопасности, действующие на предприятии, эксплуатирующем трансформаторы.

При подготовке к эксплуатации, при проведении технического обслуживания должны выполняться «Правила устройства электроустановок», «Правила по охране труда при эксплуатации электроустановок».

- 2.2 Требования безопасности при поверке трансформаторов по ГОСТ 8.216.
- 2.3 Производство работ на трансформаторах без снятия напряжения с первичной обмотки не допускается.

3 Описание и работа трансформаторов

3.1 Назначение трансформаторов

Трансформаторы предназначены для нужд электроэнергетики. Трансформаторы устанавливаются в комплектные распределительные устройства (КРУ), закрытые распределительные устройства (ЗРУ) и служат для передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 Гц.

Трансформаторы изготавливаются классов напряжения 3, 6 и 10 кВ, климатического исполнения «У» категории размещения 2 по ГОСТ 15150 и предназначены для эксплуатации в следующих условиях:

- высота установки над уровнем моря не более 1000 м;
- температура окружающего воздуха, с учетом превышения температуры воздуха внутри КРУ, от минус 45 °C до плюс 50 °C;
 - относительная влажность воздуха 100 % при 25 °C;
 - давление воздуха согласно нормам ГОСТ 15543.1;
- окружающая среда невзрывоопасная, не содержащая пыли, агрессивных газов и паров в концентрациях, разрушающих покрытия, металлы и изоляцию (атмосфера типа II по ГОСТ 15150);
 - отсутствие непосредственного воздействия солнечной радиации;
 - рабочее положение трансформаторов в пространстве любое.

Трансформаторы предназначены для эксплуатации в электроустановках, подвергающихся воздействию грозовых перенапряжений при обычных мерах грозозащиты, и имеют нормальную изоляцию уровня «б» по ГОСТ 1516.3 класса нагревостойкости «В» по ГОСТ 8865 и класса воспламеняемости FH (ПГ) 1 по ГОСТ 28779.

Трансформаторы соответствуют группе условий эксплуатации M6 по ГОСТ 30631. Трансформаторы сейсмостойки при воздействии землетрясений интенсивностью 8 баллов по MSK-64 при уровне установки над нулевой отметкой до 70 м.

Трансформаторы соответствуют требованиям устойчивости к электромагнитным помехам при воздействии магнитного поля промышленной частоты по ГОСТ Р 50648, установленным для группы исполнения IV по ГОСТ 32137.

Трансформаторы удовлетворяют нормам индустриальных радиопомех, установленным в ГОСТ Р 51318.11, класс A, группа 1.

Трансформаторы, предназначенные для поставки на AC, соответствуют классу безопасности 2 (по согласованию с заказчиком), 3, 4 по НП-001-15 и II категории сейсмостойкости по НП-031-01.

3.2 Технические характеристики

Основные технические характеристики приведены в таблицах 1, 2 и 3.

Таблица 1

Таолица 1			
Herricana avera wan arcama	Значение для исполнения		
Наименование параметра	НОЛ.08-3	НОЛ.08-6	НОЛ.08-10
Класс напряжения, кВ	3	6	10
Наибольшее рабочее напряжение, кВ	3,6	7,2	12
Номинальное напряжение первичной обмотки, В	3000 3300	6000 6300 6600 6900	10000 11000
Номинальное напряжение вторичной обмотки, В	100 или 110*		
Класс точности по ГОСТ 1983	0,2**; 0,5; 1; 3		
Номинальная мощность***, В·А, с коэффициентом мощности активно-индуктивной нагрузки соѕ φ = 0,8 в классах точности:			
0,2	10; 15	10; 15; 25; 30	10; 15; 25; 30; 50
0,5	10; 15; 30	10; 15; 25; 30; 50	10; 15; 25; 30; 50; 75
1	50	75	150
3	75	200	300
Предельная мощность вне класса точности, В·А	160	400	630
Предельный допустимый длительный первичный ток, А	0,08	0,11	0,10
Схема и группа соединения обмоток	1/1-0		
Номинальная частота, Гц	50		

Примечания

- 1 * Только для трансформаторов с номинальным напряжением первичной обмотки 6600 В и 11000 В.
- 2 ** Только для трансформаторов с номинальным напряжением вторичной обмотки 100 В и одним классом точности.
- 3 *** Номинальная мощность оговаривается при заказе.
- 4 Для коммерческого учета электроэнергии трансформаторы изготавливаются с одним классом точности 0,2 или 0,5.

Таблица 2

	Значение для исполнения	
Наименование параметра	НОЛ.08-6М,	НОЛ.08-10М,
	НОЛ.08-6МИ*	НОЛ.08-10МИ*
Класс напряжения, кВ	6	10
Наибольшее рабочее напряжение, кВ	7,2	12
Номинальное напряжение первичной обмотки, В	6000	10000
Номинальное напряжение вторичной обмотки, В	100	
Класс точности по ГОСТ 1983	0,2; 0,5; 1; 3	
Номинальная мощность, В А, с коэффициентом мощности		
активно-индуктивной нагрузки $\cos \varphi = 0.8$ в классе точно-		
сти:		
0,2	20	30
0,5	30; 50	30; 50
1	75	75
3	150	200
Предельная мощность вне класса точности, В А	400	
Предельный допустимый длительный первичный ток, А	0,07	0,04
Расчетное напряжение короткого замыкания для класса		
точности 0,5; %, при нагрузке, В·А:		
30	0,2	0,23
50	0,3	0,38
Схема и группа соединения обмоток	1/1-0	
Номинальная частота, Гц	50	

Примечание - * Исполнение трансформатора с инверсным расположением выводов первичной обмотки. Таблица 3

	Значение для исполнения	
Наименование параметра	НОЛ.08.3-6М,	
	НОЛ.08.3-6МИ	_
Класс напряжения, кВ	6	10
Наибольшее рабочее напряжение, кВ	7,2	12
Номинальное напряжение первичной обмотки, В	6000	10000
Номинальное напряжение основной вторичной обмотки, В	10	00
Номинальное напряжение дополнительной вторичной	100	
обмотки, В	11	
Допустимое отклонение напряжения дополнительной	± 0,5	
вторичной обмотки от номинального, %		
Класс точности по ГОСТ 1983	0,2; 0,5; 1; 3	
Номинальная мощность основной вторичной обмотки,		
В А, с коэффициентом мощности активно-индуктивной		
нагрузки $\cos \varphi = 0.8$ в классе точности (при одновремен-		
ном использовании основной и дополнительной обмот-		
ки):		
0,2	5	10
0,5	30	40
1	75	75
3	150	200
Номинальная мощность дополнительной вторичной об-		
мотки, В А, с коэффициентом мощности активно-	20	
индуктивной нагрузки cos φ = 0,8		
Предельная мощность вне класса точности, В А	400	

Окончание таблицы 3

. Науманарамна нараматра	Значение для исполнения	
Наименование параметра	НОЛ.08.3-6М	НОЛ.08.3-10М
Предельный допустимый длительный первичный ток, А	0,07	0,04
Расчетное напряжение короткого замыкания при нагрузке для класса точности 0,5; %	0,79	0,85
Схема и группа соединения обмоток	1/1/1-0-0	
Номинальная частота, Гц	50	

3.3 Устройство

Трансформаторы выполнены однофазными двухобмоточными или трехобмоточными с незаземляемыми выводами.

Магнитопровод стержневого типа, намотан из холоднокатаной электротехнической стали, разрезной. Обмотки расположены на магнитопроводе концентрически. Внутри расположена вторичная обмотка. Первичная обмотка состоит из двух секций, соединенных между собой. Поверх каждой секции уложены экраны, которые соединены с высоковольтными выводами. Экраны служат для повышения электрической прочности трансформатора при воздействии на него грозовых импульсов напряжения. Вторичная обмотка предназначена для измерения, учета электроэнергии и питания цепей защиты. Дополнительная вторичная обмотка трансформаторов НОЛ.08.3-6(10)М предназначена для питания цепей собственных нужд.

Обмотки с магнитопроводом залиты изоляционным компаундом, создающим монолитный блок, который обеспечивает электрическую прочность изоляции и защиту обмоток от механических повреждений и проникновения влаги.

Подключение к высоковольтным выводам первичной обмотки «А» и «Х» производится через контакты с резьбой М10, расположенные на верхней поверхности трансформаторов. Подключение к выводам вторичной обмотки производится через контакты с резьбой М6, расположенные на торце трансформаторов.

На опорной поверхности трансформаторов расположены четыре резьбовых отверстия с резьбой M10, которые служат для крепления трансформаторов на месте установки и заземления магнитопровода.

На опорной поверхности трансформаторов НОЛ.08-6(10)М, НОЛ.08.3-6(10)М установлена плита с установочными отверстиями. Плита в процессе эксплуатации должна быть заземлена.

Табличка с техническими данными трансформаторов расположена внизу на одной из сторон трансформаторов.

Габаритные, установочные, присоединительные размеры, масса и принципиальная электрическая схема трансформаторов приведены в приложениях А и Б.

3.4 Маркировка

Маркировка выводов трансформаторов рельефная, расположена на литом блоке и выполнена при заливке трансформаторов компаундом в форму.

Выводы имеют следующую маркировку:

- высоковольтные выводы первичной обмотки «А» и «Х»;
- выводы вторичной обмотки «а» и «х»;
- для трансформаторов НОЛ.08.3-6(10)М: выводы основной вторичной обмотки $\langle a_1 \rangle$ и $\langle x_1 \rangle$, выводы дополнительной вторичной обмотки $\langle a_2 \rangle$ и $\langle x_2 \rangle$;
 - контактная площадка для заземления плиты знак «
 → » по ГОСТ 21130.

На трансформаторах имеется табличка технических данных с указанием основных технических характеристик.

4 Эксплуатация трансформаторов

4.1 Подготовка трансформаторов к эксплуатации

По прибытии на место установки осуществить разгрузку и распаковку трансформаторов.

Произвести внешний осмотр трансформаторов для проверки отсутствия трещин и сколов изоляции, коррозии на металлических деталях.

Перед установкой трансформаторы тщательно протереть сухой ветошью для удаления пыли, грязи и влаги.

Трансформаторы установить на опорные конструкции. Место для установки должно обеспечивать удобный доступ к клеммникам выводов вторичной обмотки.

Подвести кабель к выводам вторичной обмотки и произвести необходимые электрические соединения, предварительно очистив все контактные поверхности от загрязнений сухой ветошью.

Перед вводом в эксплуатацию трансформаторы должны быть подвергнуты испытаниям в объеме, установленном предприятием-изготовителем КРУ и нормативной документацией на КРУ в соответствии с разделом «Техническое обслуживание» настоящего РЭ.

Методы испытаний трансформаторов должны соответствовать ГОСТ 1983.

Пломбирование выводов вторичной измерительной обмотки производится после монтажа вторичных соединений уполномоченной на это службой.

4.2 Эксплуатационные ограничения

Эксплуатация трансформаторов должна производиться в соответствии с «Правилами устройства электроустановок» (ПУЭ), «Правилами технической эксплуатации электроустановок потребителей» (ПТЭЭП) и «Правилами технической эксплуатации электрических станций и сетей Российской Федерации» (ПТЭ) при следующих ограничениях:

- наибольшее рабочее напряжение и номинальные мощности не должны превышать значений, указанных в таблицах 1 и 2;
- предельный допустимый длительный ток первичной обмотки не должен превышать значений, указанных в таблицах 1 и 2;
- значения механических внешних воздействующих факторов не должны превышать установленных ГОСТ 30631 для группы условий эксплуатации М6;
 - качество электроэнергии должно соответствовать требованиям ГОСТ 32144.

Наименьшие допустимые расстояния между трансформаторами, а также между трансформаторами и заземляемыми частями КРУ (от залитых катушек трансформаторов в свету) должны быть:

HOЛ.08-3 15 мм; HOЛ.08-6; HОЛ.08-6М; HОЛ.08.3-6М 25 мм; HОЛ.08-10; HОЛ.08-10М; HОЛ.08.3-10М 35 мм.

5 Поверка трансформаторов

5.1 Трансформаторы напряжения поверяются в соответствии с ГОСТ 8.216. Интервал между поверками 16 лет.

6 Техническое обслуживание

- 6.1 При техническом обслуживании следует соблюдать требования, указанные в разделе «Требования безопасности» настоящего РЭ.
- 6.2 Работы по техническому обслуживанию следует проводить в сроки, установленные в ПТЭ и ПТЭЭП. При отсутствии в ПТЭ и ПТЭЭП таких указаний, сроки устанавливает техническое руководство предприятия, эксплуатирующего трансформаторы.

При техническом обслуживании проводятся следующие работы:

- очистка трансформатора от пыли и грязи сухой ветошью, не оставляющей ворса;
- внешний осмотр трансформатора с целью проверки отсутствия на поверхности изоляции трещин и сколов;
 - проверка крепления трансформатора;
 - проверка надежности контактных соединений;
 - испытания, объем и нормы которых, установлены РД 34.45-51-300-97.

Методы испытаний – в соответствии с ПТЭ и ПТЭЭП с учетом дополнительных указаний настоящего РЭ.

- 6.3 Указания и рекомендации по методам проведения испытаний трансформаторов и оценке их результатов:
- измерение сопротивления обмоток постоянному току. Измерение производится прибором, имеющим класс точности не ниже 0,5. Измеренное значение сопротивления не должно отличаться от указанного в паспорте более чем на \pm 10 %;
- измерение сопротивления изоляции первичной обмотки. Измерение производится мегаомметром на 2500 В, при этом напряжение прикладывается между соединенными вместе и изолированными от земли выводами «А» и «Х» и соединенными вместе заземленными выводами вторичной обмотки. Сопротивление изоляции должно быть не менее 1000 МОм;

- измерение сопротивления изоляции вторичной обмотки. Измерение производится мегаомметром на 1000 В, при этом напряжение прикладывается между вторичной обмоткой и крепежными втулками. Сопротивление изоляции должно быть не менее 1000 МОм;
- измерение тока холостого хода. Измерение производить с помощью вольтметра и амперметра со стороны вторичной обмотки при напряжении, равном 1,2 номинального. Измеренное значение не должно отличаться от указанного в паспорте более чем на \pm 10 %;
- испытание электрической прочности изоляции первичной обмотки индуктированным напряжением частотой 400 Гц в течение 15 секунд в соответствии с таблицей 4. Трансформатор должен возбуждаться со стороны вторичной обмотки.

Таблица 4

Тип трансформатора	Номинальное напряжение пер- вичной обмотки, В	Испытательное напряжение, кВ
НОЛ.08-3	3000 3300	6,0 6,6
НОЛ.08-6; НОЛ.08-6М; НОЛ.08.3-6М	6000 6300 6600 6900	12,0 12,6 13,2 13,8
НОЛ.08-10; НОЛ.08-10М; НОЛ.08.3-10М	10000 11000	20,0 22,0

Примечание — При отсутствии источника напряжения повышенной частоты 400 Гц испытание трансформатора допускается проводить напряжением 1,3 номинального при частоте 50 Гц приложенным к выводам «А» и «Х» от постороннего источника в соответствии с таблицей 5 в течение 1 минуты.

Таблица 5

Тип	Класс напря-	Номинальное напряжение	Испытательное
трансформатора	жения, кВ	первичной обмотки, В	напряжение, кВ
НОЛ.08-3	2	3000	3,9
ПОЛ.00-3	3	3300	4,3
НОЛ.08-6;		6000	7,8
НОЛ.08-6M;	6	6300	8,2
НОЛ.08.3-6М	0	6600	8,6
11071.08.3-0101		6900	9,0
НОЛ.08-10;		10000	13,0
НОЛ.08-10М;	10	11000	14,3
НОЛ.08.3-10М		11000	14,5

- испытание электрической прочности изоляции одноминутным приложенным напряжением промышленной частоты 50 Гц:
 - между вторичной обмоткой и магнитопроводом 3 кВ;
 - между первичной обмоткой и вторичной обмоткой, соединенной с магнитопроводом. Испытательные напряжения указаны в таблице 6.

Таблица 6

Тип трансформатора	Класс напряжения, кВ	Испытательное напряжение, кВ
НОЛ.08-3	3	21,6
НОЛ.08-6; НОЛ.08-6М; НОЛ.08.3-6М	6	28,8
НОЛ.08-10; НОЛ.08-10М; НОЛ.08.3-10М	10	37,8

При этом обмотки должны быть закорочены.

- 6.4 По усмотрению предприятия, эксплуатирующего трансформаторы, объем работ по техническому обслуживанию может быть сокращен.
- 6.5 Трансформаторы неремонтопригодны. При несоответствии технических параметров трансформаторов настоящему РЭ, трансформаторы необходимо заменить.

7 Требования к подготовке персонала

- 7.1 Установка трансформаторов должна проводиться под руководством и наблюдением инженерно-технических работников рабочими, обученными выполнению необходимых операций и имеющими квалификационный разряд не ниже 3.
- 7.2 При техническом обслуживании трансформаторов и проведении испытаний работы должны проводиться обученным персоналом, прошедшим специальную подготовку и стажировку и допущенным к проведению испытаний в действующей электроустановке.

Бригада, проводящая техническое обслуживание и испытание, должна состоять не менее чем из двух человек, из которых производитель работ должен иметь квалификационную группу по электробезопасности не ниже IV, а остальные члены бригады не ниже III.

8 Упаковка. Хранение

8.1 Хранение и складирование трансформаторов должно производиться в закрытых помещениях в упаковке или без нее.

При хранении трансформаторов без упаковки должны быть приняты меры против возможных повреждений.

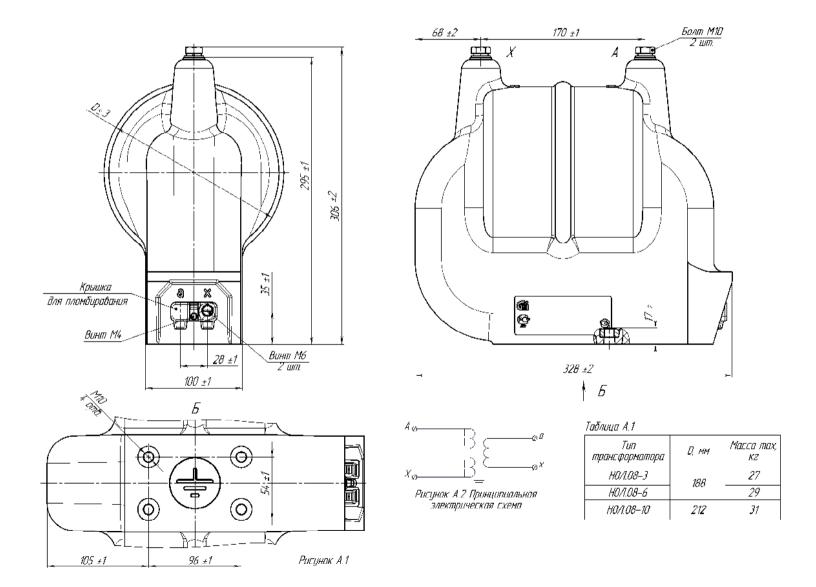
- 8.2 Условия хранения трансформаторов в части воздействия климатических факторов должны соответствовать условиям хранения 5 ГОСТ 15150.
- 8.3 Срок защиты трансформаторов консервационной смазкой, нанесенной на предприятии-изготовителе, составляет три года. Срок исчисляется от даты консервации, указанной в паспорте на изделие.

По истечении указанного срока металлические части подлежат переконсервации с предварительным удалением старой консервационной смазки. Консервацию проводить по ГОСТ 9.014 маслом К-17 ГОСТ 10877 или другим консервантом из предусмотренных ГОСТ 23216.

9 Транспортирование

- 9.1 Транспортирование трансформаторов возможно любым закрытым видом транспорта и на любые расстояния в условиях транспортирования Ж согласно ГОСТ 23216.
- 9.2 Допускается транспортирование трансформаторов без упаковки в контейнерах и в закрытых автомашинах.
- 9.3 Климатические факторы при транспортировании должны соответствовать условиям хранения 5 ГОСТ 15150.
- 9.4 При транспортировании трансформаторы в упаковке или без нее должны быть предохранены от падений и ударов.
- 9.5 Транспортирование в самолетах должно производиться в отапливаемых герметизированных отсеках.
- 9.6 Подъем и перемещение трансформаторов осуществлять при помощи рым-болтов с резьбой М10 ГОСТ 4751, ввернув их в высоковольтные контакты выводов «А» и «Х» трансформаторов. Рым-болты в комплект поставки не входят.

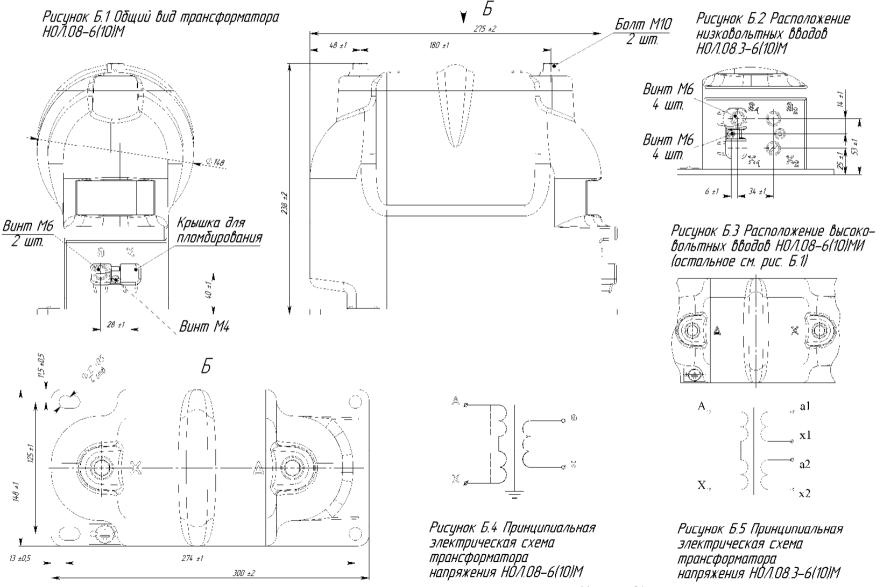
9.7 При проведении такелажных работ необходимо принять меры против возможного повреждения поверхности трансформаторов.


10 Утилизация

- 10.1 При транспортировании, хранении, эксплуатации, испытании и утилизации трансформаторы не представляют вреда для окружающей среды и здоровья человека.
- 10.2 После окончания срока службы трансформаторы подлежат списанию и утилизации.
 - 10.3 При утилизации должны быть выполнены следующие рекомендации:
- металлические составные части трансформаторов (медь, сталь электротехническая и конструкционная), высвобожденные механическим путем, должны быть сданы на предприятия по переработке цветных и черных металлов;
- фрагменты литой изоляции, картон и другие изоляционные материалы должны быть отправлены на полигон твердых бытовых отходов.

1ΓΓ.671 241.009 PЭ

Приложение А (обязательное)


Габаритные, установочные, присоединительные размеры, масса и принципиальная электрическая схема трансформаторов напряжения НОЛ.08

1ΓΓ.671 241.009 PЭ

Приложение Б (обязательное)

Габаритные, установочные, присоединительные размеры, масса и принципиальная электрическая схема трансформаторов напряжения HOЛ.08-6(10)M

Масса – 24 кг тах